### COVID-19 Respiratory Sequelae



#### David Meyer, DM

Associate Professor, Voice/Voice Pedagogy Director, Janette Ogg Voice Research Center Shenandoah Conservatory



2020 D. Meyer



### What we are talking about

Breathing for singing Typical values Good news/Bad news

Covid-19 respiratory sequelae (after-effects)

Why should we care? SARS/MERS comparison Emerging covid-19 data

The take home message





### What we are talking about

Breathing for singing Typical values Good news/Bad news

Covid-19 respiratory sequelae (after-effects)

Why should we care? SARS/MERS comparison Emerging covid-19 data

The take home message



# **Breathing...**

Chi sa respirare, sa cantare



https://www.pexels.com/photo/mona-lisa-with-face-mask-3957982/

# **Breathing...**

Chi sa respirare, sa cantare

#### One who breathes well, sings well

**Attrib. Herbert-Caesari, Lamperti, + others** 



https://www.pexels.com/photo/mona-lisa-with-face-mask-3957982/

# **Breathing...**

Chi sa respirare, sa cantare

**One who breathes well**, Attrib. Herbert-Caesari, Lamperti, + othe Breau important for singers





1. Flow

#### 2. Pressure

#### 3. Volumes/capacities



https://www.pexels.com/photo/man-holding-microphone-singing-3388900/

 Flow: how much air per sec. TYP 0.1 to 0.2 L/sec.
Phrases usually < 12 sec.</li>
Sing 12 sec. @ 0.2/sec. = 2.4 liters
Pressure

#### 3. Volumes/capacities



- Flow: how much air per sec. TYP 0.1 to 0.2 L/sec. Phrases usually < 12 sec. Sing 12 sec. @ 0.2/sec. = 2.4 liters
  Pressure: force over an area TYP: 7-35 cm H<sub>2</sub>O 10cm H<sub>2</sub>O = pressure holding apple Can go MUCH HIGHER How we (mostly) control loudness
- 3. Volumes/capacities





- Flow: how much air per sec. TYP 0.1 to 0.2 L/sec. Phrases usually < 12 sec. Sing 12 sec. @ 0.2/sec. = 2.4 liters
  Pressure: force over an area TYP: 7-35 cm H<sub>2</sub>O 10cm H<sub>2</sub>O = pressure holding apple Can go MUCH HIGHER How we (mostly) control loudness
- 3. Volumes/capacities: 3-5 L
  - TYP:Men more than womenTaller persons more than shorterYounger persons more than older

https://www.pexels.com/photo/man-holding-microphone-singing-3388900/



#### The GOOD news!

More is not necessarily better

Small lungs mean short vocal folds (require less airflow)

Sopranos w. big lungs can sing longer phrases than basses with small lungs

#### The BAD news...

Singers *rely* on breath

Singers don't have more air (TLC) than non-singers (Gould, 1973) They *use* the breath differently

IF breathing compromised (e.g. illness), singing "costs" more



# Why should I care?



2020 D. Meyer



https://memecreator.org/static/images/memes/5210831.jpg

# Why should I care?

### Lung disease: COMMON often undiagnosed

### Over 35 million Americans have chronic, preventable lung disease (before COVID-19)

Asthma, Interstitial lung disease, COPD - chronic obstructive pulmonary disease







Asthma, Interstitial lung disease, COPD - chronic obstructive pun





(Pal, 2017)

# Why <u>else</u> should I care?

Smaller ave. lung capacities?

Older, female, shorter (many NATS members?)

COVID-19 & respiratory risk Lung disease: risk (1 in 10) Persons w. smaller lung capacities: risk (1) Professions requiring optimal respiration Vocal athletes



# Learning as we go

#### Few studies on rehab + long-term sequelae

(Barker-Davies et al, 2020)

#### Not all who catch COVID-19 will be hospitalized (Google)

#### If you are hospitalized (and recover): 50% chance of requiring ongoing rehab care (Murray A et al, 2020)





# Learning as we go

If you are hospitalized and need the ICU Possible lasting post-recovery sequelae

Post-intensive care syndrome, aka PICS breathing, physical, cognitive and psychological problems (Rawal et al, 2017; Denehy, 2012; Jackson, 2012)





## **Predictions**

#### Very little data on COVID-19 sequelae

#### **Severe COVID-19 similar to SARS and MERS**







https://www.pexels.com/photo/ask-blackboard-chalk-board-chalkboard-356079/

# Similar to SARS & MERS

#### **Persistent respiratory + other issues > 1 year post recovery**

(Herridge et al, 2003; Tansey 2007)

#### 3 SARS studies may forecast COVID-19 respiratory sequelae:

**Study 1**: 6%–20% of subjects suffered muscle weakness and mild to moderate restrictive lung disease 6–8 weeks post discharge for SARS (Chan et al, 2003)

**Study 2:** 94 SARS survivors - about a third presented with persistent pulmonary function impairment @ 1-year follow-up. Overall health of these SARS survivors was also significantly worse than the general population. (Ong et al, 2005)

**Study 3:** 97 SARS survivors - 27.8% had abnormal chest radiograph findings as well as persisting reductions in exercise capacity (6-minute walk test (6MWT) at 12 months (Hui et al, 2005)

COVID-19: similar to SARS & MERS but there are differences (Sheehy et al, 2020)

https://www.pexels.com/photo/ask-blackboard-chalk-board-chalkboard-356079/



2020 D. Meyer

Lasting respiratory issues associated with COVID-19 Pulmonary lesions, alveolar injuries, other probs. (Tian et al, 2020; Pan et al, 2020)

Many suffer decreased respiratory function post-COVID-19 (Barker-Davies et al, 2020)

#### **Consider:**

66 of 70 (94%) COVID-19 patients: *lasting lung damage* CT scans 2 days before hospital discharge (Wang et al, 2020) Clumps hardened tissue blocking blood vessels + lesions around alveoli

Lesions can cause chronic, long-term lung disease similar to SARS and MERS (Cox, 2020)



https://www.pexels.com/photo/diligent-african-american-scientist-developing-solution-to-chemical-problems-in-light-office-3825463/



Some lung damage will likely gradually heal or disappear

*Some* lung abnormalities will harden into layers of scar tissue (pulmonary fibrosis)

Scarring stiffens lungs - shortness of breath

Pulmonary fibrosis can limit ability to be physically active



https://www.pexels.com/photo/diligent-african-american-scientist-developing-solution-to-chemical-problems-in-light-office-3825463/

#### Being asymptomatic w. COVID-19 ≠ your lungs are unaffected



A recent (June 18) study:

37 asymptomatic cases: **57**% showed lung abnormalities on CT Similar to walking pneumonia (Long et al, 2020)

2020 D. Meyer

 $\bigcirc$ 

1875

https://www.pexels.com/photo/person-holding-covid-sign-3951600/

If I smash my thumb... A concert violinist ...



18 75

https://www.pexels.com/photo/black-claw-hammer-on-brown-wooden-plank-209235/

If I smash my thumb... A concert violinist ...

**Ave. person: reduced respiratory function** *may* **not be debilitating Singers and teachers of singing: can be career-ending** 



18 75

https://www.pexels.com/photo/black-claw-hammer-on-brown-wooden-plank-209235/

# TAKE HOME MESSAGE

#### Not everyone will get COVID-19

Not all who get it will need hospitalization Not all who are hospitalized will have respiratory sequelae (94% in one study)

Many persons (hospitalized or not) have respiratory sequelae post COVID-19 Asymptomatic persons can suffer COVID-19 lung damage Not all of COVID-19's respiratory changes will be permanent

Singers power the sound with breath – *vocal athletes* Small changes in respiratory function may cause a large handicap For some, career-ending



#### Lynn Helding

NATS Voice Science Advisory Committee

Linda Carroll, PhD Albert L. Merati M.D. David A. Stoltz, MD, PhD Johan Sundberg, PhD



https://www.pexels.com/photo/light-sign-typography-lighting-519/

### References

Barker-Davies RM, O'Sullivan O, Senaratne KPP, et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. British Journal of Sports Medicine Published Online First: 31 May 2020. doi: 10.1136/bjsports-2020-102596

Chan KS, Zheng JP, Mok YW, et al. Sars: prognosis, outcome and sequelae. Respirology 2003;8 Suppl:S36–40.doi:10.1046/j.1440-1843.2003.00522.x pmid:http://www.ncbi.nlm.nih.gov/pubmed/15018132

Cox D. Some patients who survive COVID-19 may suffer lasting lung damage. Sciencenews.org. https://www.sciencenews.org/article/coronavirus-covid-19-some-patients-may-suffer-lasting-lung-damage.

Denehy L, Elliott D. Strategies for post ICU rehabilitation. Curr Opin Crit Care 2012;18:503– 8.doi:10.1097/MCC.0b013e328357f064 pmid:http://www.ncbi.nlm.nih.gov/pubmed/22914429

Gould, W. J., & Okamura, H. (1973). Static Lung Volumes in Singers. Annals of Otology, Rhinology & Laryngology, 82(1), 89–95. https://doi.org/10.1177/000348947308200118

Herridge MS, Cheung AM, Tansey CM, et al. One-Year outcomes in survivors of the acute respiratory distress syndrome. N Engl J Med 2003;348:683–93.doi:10.1056/NEJMoa022450 pmid:http://www.ncbi.nlm.nih.gov/pubmed/12594312



### References

Hui DS, Wong KT, Ko FW, et al. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest 2005;128:2247–61.doi:10.1378/chest.128.4.2247 pmid:http://www.ncbi.nlm.nih.gov/pubmed/16236881

Jackson JC, Ely EW, Morey MC, et al. Cognitive and physical rehabilitation of intensive care unit survivors: results of the return randomized controlled pilot investigation. Crit Care Med 2012;40:1088–97.doi:10.1097/CCM.0b013e3182373115 pmid:http://www.ncbi.nlm.nih.gov/pubmed/22080631

Long Q, Tang X, Shi Q, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med (2020). https://doi.org/10.1038/s41591-020-0965-6

Murray A, Gerada C, Morris J. We need a Nightingale model for rehab after covid-19, 2020. Available: https://www.hsj.co.uk/commissioning/we-need-a-nightingale-model-for-rehab-after-covid-19-/7027335.article

Pal S. Epidemiology of Chronic Lung Diseases. US Pharm. 2017;42(7):8. https://www.uspharmacist.com/article/epidemiology-of-chronic-lung-diseases

Pan F. et al. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19) CH CT . Radiology. Pages:715–721 Published Online:Feb 13 2020 https://doi.org/10.1148/radiol.2020200370



### References

Ong K-C , Ng AW-K , Lee LS-U, et al. 1-Year pulmonary function and health status in survivors of severe acute respiratory syndrome. Chest 2005;128:1393–400.doi:10.1378/chest.128.3.1393 pmid:http://www.ncbi.nlm.nih.gov/pubmed/16162734

Rawal G, Yadav S, Kumar R. Post-intensive care syndrome: an overview. J Transl Int Med 2017;5:90–2.doi:10.1515/jtim-2016-0016 pmid:http://www.ncbi.nlm.nih.gov/pubmed/28721340

Sheehy LM. Considerations for Postacute Rehabilitation for Survivors of COVID-19. JMIR Public Health Surveill 2020;6(2):e19462 URL: https://publichealth.jmir.org/2020/2/e19462 DOI: 10.2196/19462 PMID: 32369030 PMCID: 7212817

Tansey CM, Louie M, Loeb M, et al. One-Year outcomes and health care utilization in survivors of severe acute respiratory syndrome. Arch Intern Med 2007;167:1312–20.doi:10.1001/archinte.167.12.1312 pmid:http://www.ncbi.nlm.nih.gov/pubmed/17592106

Tian SF, Hu WD, Niu L, Liu H, Xu HB, Xiao SY. Pulmonary pathology of early phase SARS-COV-2 Pneumonia. Preprints 2020. doi: 10.20944/preprints 202002.0220.v1.

Wang Y, Dong C, et al. Temporal Changes of CT Findings in 90 Patients with COVID-19 Pneumonia: A Longitudinal Study. Radiology. Published Online: Mar 19 2020 https://doi.org/10.1148/radiol.2020200843

